Skip to main content

The Death of History?

The last several days have seen a couple of articles about the decline of history majors in America.  How big is the problem?  And is it isolated, or across the proverbial board?

This will let you see the macro trend, and drill down all the way to a single institution, if you'd like.

The four charts, clockwise from top left are: Raw numbers of bachelor's degrees awarded from 2011-2016 (AY); percentage of total (which only makes sense when you color the bars) to show the origins of those degrees; percentage change since the first year selected; and numeric change since the first year selected.

You can color the bars by anything in the top box at right (the blue one) or just leave totals; and you can filter the results to any region, or group of years, or major group (for instance, history, or physical sciences), or even any specific institution.  And of course you can combine filters to look at Business majors in the Southeast, if you wish.

That's it.  Pretty simple.  Let me know what looks interesting here.


Comments

Popular posts from this blog

The Highly Rejective Colleges

If you're not following Akil Bello on Twitter, you should be.  His timeline is filled with great insights about standardized testing, and he takes great effort to point out racism (both subtle and not-so-subtle) in higher education, all while throwing in references to the Knicks and his daughter Enid, making the experience interesting, compelling, and sometimes, fun. Recently, he created the term " highly rejective colleges " as a more apt description for what are otherwise called "highly selective colleges."  As I've said before, a college that admits 15% of applicants really has a rejections office, not an admissions office.  The term appears to have taken off on Twitter, and I hope it will stick. So I took a look at the highly rejectives (really, that's all I'm going to call them from now on) and found some interesting patterns in the data. Take a look:  The 1,132 four-year, private colleges and universities with admissions data in IPEDS are incl

Freshman Migration, 1986 to 2020

(Note: I discovered that in IPEDS, Penn State Main Campus now reports with "The Pennsylvania State University" as one system.  So when you'd look at things over time, Penn State would have data until 2018, and then The Penn....etc would show up in 2020.  I found out Penn State main campus still reports its own data on the website, so I went there, and edited the IPEDS data by hand.  So if you noticed that error, it should be corrected now, but I'm not sure what I'll do in years going forward.) Freshman migration to and from the states is always a favorite visualization of mine, both because I find it a compelling and interesting topic, and because I had a few breakthroughs with calculated variables the first time I tried to do it. If you're a loyal reader, you know what this shows: The number of freshman and their movement between the states.  And if you're a loyal viewer and you use this for your work in your business, please consider supporting the costs

Yes, your yield rate is still falling, v 2020

I started doing this post on a regular basis several years ago, in response (if I recall) to a colleague talking about their Board of Trustees Chair insisting that "all we need to do" to bring enrollment back to its former level is to get the yield rate up.   That's the equivalent of saying all you need to do is straighten your drives and cut ten putts from each round, and you'll be a great golfer.  Moreover, it's based on the assumption that a falling yield rate is based on something you're doing or not doing.  The challenge is much larger, and a lot harder to address.  It's not a switch you flip. So we've got this: A look at applications, admits, and enrolls over the last twenty years, and three key ratios that are based on those numbers: Admit rate, or the percentage of applicants offered admission; yield rate, or the percentage of those offered admission who enroll; and the lesser-known draw rate, which is calculated by dividing the yield rate by t